Rearrangement inequality

 In mathematics, the rearrangement inequality[1] states that


$${\displaystyle x_{n}y_{1}+\cdots +x_{1}y_{n}\leqslant x_{\sigma (1)}y_{1}+\cdots +x_{\sigma (n)}y_{n}\leq x_{1}y_{1}+\cdots +x_{n}y_{n}}$$


for every choice of real numbers


$$ {\displaystyle x_{1}\leqslant \cdots \leqslant x_{n}\quad {\text{and}}\quad y_{1}\leqslant \cdots \leq y_{n}}$$


and every permutation $ {\displaystyle x_{\sigma (1)},\dots ,x_{\sigma (n)}}$ of $x_1,..,x_n.$


If the numbers are different, meaning that $$ {\displaystyle x_{1}<\cdots <x_{n}\quad {\text{and}}\quad y_{1}<\cdots <y_{n},}$$


Source. Wikipedia


Maple can help us by using what program be writen by me and BestChoice123.









No comments:

Post a Comment